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N.B. :

• Thanks to:

J.R. Myra, X.-Q. Xu, and S.I. Krasheninnikov for   

helpful discussions

• A work in progress...



Outline

• Motivation: LaBombard-Eich-Goldston Scaling and its implications

• Many Questions...

• Constraints on Turbulence Production in SOL

• Turbulence Spreading: CoreÆSOL

• The Key Questions

• Some Equations

• Scalings

• Discussion and Conclusions



Motivation

• SOL heat load width is a critical issue for ITER, and M.F.E. in 

general

• LaBombard-Eich-Goldston scaling is a classic “3S’s” case:

– Successful – works well for present day experiments

– Simple (Goldston) - 𝜆𝜆 ≈ 𝑉𝑉𝑉𝑉 with 𝑉𝑉 ≈ 𝑉𝑉𝐷𝐷, 𝑉𝑉 ∼ 𝑉𝑉𝑡𝑡𝑡𝑡𝑡/𝑅𝑅𝑅𝑅 −1

So 𝜆𝜆 ∼ 1/𝐵𝐵𝜃𝜃

– Scary Æ extrapolation to future is pessimistic

drifts !

“𝜒𝜒”  ≈ 𝑉𝑉𝐷𝐷𝜆𝜆



Many Questions

• Will the L-E-G trend continue? Why not?

• SOL is turbulent ! (infinity of measurements)

– Why turbulence, yet transport seemingly described by drifts?

– As transport ÅÆ relaxation linked, what is origin of SOL turbulence?

– Under what conditions might turbulent transport control SOL width? 

Cross-over?

present ITER (after X.-Q. Xu)

𝜒𝜒

𝜒𝜒𝐺𝐺
𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠



Many Limitations on SOL Relaxation

• Long history of instability studies for SOL  

(cf: Garbet et al, Myra and Krash ‘02)

• Despite unfavorable average curvature, a remarkable number of 

restrictions on instability!

– 𝑘𝑘⊥𝜌𝜌𝑡𝑡

– 𝑘𝑘𝑟𝑟𝜌𝜌𝑏𝑏 ÅÆ drifts Æ radial excursion, akin banana width

– line tying ÅÆ sheath boundary condition Æ vorticity damping

– ExB shear, PV gradient Æ crucial to distinguish from mass flows, etc

– parallel flows to PFC’s depletes drive Æ turbulence not really “flux driven”

weak 
coupling



Origin of SOL Turbulence?
Î “Turbulence Spreading”

• SOL adjacent to pedestal/edge

• Simple model:  Γ𝜀𝜀 = −𝐷𝐷0𝜀𝜀𝜕𝜕𝑟𝑟𝜀𝜀

• Point: SOL fluctuations excited in edge, scattered to SOL

• Pedestal Turbulence:

– usual suspects: KBM, ETG, ...

– ‘MHD’ turbulence: marginal PB + ‘noise’

– “Blobs”, etc.

– Spreading from no man’s land (R. Singh, P.D., ‘19)

(Garbet, Hahm, P.D.)
(See Hahm, P.D.; 
J. Kor. Phys. Soc. ‘18)

pedestal 
turbulence 
entrains SOL



The Key Questions:

• Given the SOL ‘stability’, is the origin of SOL turbulence in the 

pedestal? SOL turbulence not locally driven ?!

• Model the SOL as a boundary layer driven by:

– heat flux

– turbulent intensity input/flux

i.e. Γ𝐼𝐼 = Γ𝐼𝐼(Q, pedestal gradients, parameters)

– 𝜆𝜆 = 𝜆𝜆(Γ𝐼𝐼 ,𝑉𝑉𝐷𝐷,𝑄𝑄) ?!  Æ transitions ?!

drift driven
turbulent driven  Æ classic (see L+L)

*



Some Equations Æ Toward a Reduced Model

𝜕𝜕𝑡𝑡𝑇𝑇 + 𝛻𝛻 ⋅ 𝑄𝑄 = 0

𝛻𝛻 ⋅ 𝑄𝑄 = 𝛻𝛻𝑟𝑟𝑄𝑄𝑟𝑟 + 𝛻𝛻∥𝑄𝑄∥

𝛻𝛻𝑟𝑟𝑄𝑄𝑟𝑟 = 𝜕𝜕𝑟𝑟𝑄𝑄𝐷𝐷 + 𝜕𝜕𝑟𝑟𝑄𝑄𝑇𝑇

B.C.  𝑄𝑄 ≡ 𝑄𝑄0𝑟̂𝑟|𝑠𝑠𝑠𝑠𝑠𝑠

𝑄𝑄𝑇𝑇 𝑟𝑟 = 𝑄𝑄0 − �
0

𝑟𝑟
𝛻𝛻∥𝑄𝑄∥ − 𝑄𝑄𝐷𝐷

Fluctuations ―  〈 𝛻𝛻⊥2𝜙𝜙 2〉Æ Enstrophy

―  Γ𝑞𝑞 = Enstrophy Flux

𝜕𝜕𝑡𝑡𝜀𝜀 + 𝜕𝜕𝑟𝑟Γ𝜀𝜀 = 𝑔𝑔𝑠𝑠𝑒𝑒𝑒𝑒 𝛻𝛻𝑦𝑦𝑇𝑇𝛻𝛻⊥2𝜙𝜙 −
�𝑉𝑉
𝑙𝑙
𝜀𝜀 − �𝑉𝑉𝑟𝑟𝛻𝛻⊥2𝜙𝜙 𝜕𝜕𝑟𝑟 𝛻𝛻2𝜙𝜙 + 〈𝛻𝛻⊥2 �𝜙𝜙𝛻𝛻∥𝐽𝐽∥〉

𝜕𝜕𝑟𝑟〈 �𝑉𝑉𝑟𝑟𝑟𝑟 �𝑉𝑉𝜃𝜃𝑟𝑟〉

ExB Reynolds Force

B.C. Γ𝜀𝜀 = Γ𝜀𝜀0|𝑠𝑠𝑠𝑠𝑠𝑠

+ Temperature Equation

𝜙𝜙 ↔ 𝛻𝛻 ⋅ 𝐽𝐽 = 0

sheath

turbulent 
flux 

parallel 
losses

drift 
flux

turbulentdrift

NL damping

Heat

Enstrophy Flux 
Æ spreading



Comments
• In spirit of flux-driven B.L. (see Landau & Lifshitz)

• Two flux drives:     𝑄𝑄0 Æ heat flux, from separatrix

Γ𝜀𝜀0 Æ intensity flux, from pedestal

Γ𝜀𝜀0 = Γ𝜀𝜀(𝛻𝛻𝑃𝑃𝑠𝑠𝑠𝑠𝑝𝑝, … ) Æ Induces SOL “non-locality”

Drives SOL turbulence; Noisy ?!

• SOL production Æ ala’ interchange

• ExB flow Æ production/destruction by 𝜕𝜕𝑟𝑟 𝛻𝛻𝑟𝑟2𝜙𝜙

vs interchange Æ 𝑅𝑅𝑡𝑡𝑠𝑠𝑒𝑒𝑒𝑒

Æ sheat B.C.  - scale indep. damping

• �𝑉𝑉 / 𝑙𝑙 Æ Nonlinear damping rate. Compare with 𝜔𝜔𝑇𝑇𝑡𝑡?!



Scalings
• Even reduced model is daunting ... so explore scalings

• Taking SOL damped, spreading from SOL ...

𝜕𝜕𝑡𝑡𝐼𝐼 = 𝛾𝛾𝐼𝐼 − 𝜕𝜕𝑥𝑥 𝐷𝐷0𝐼𝐼𝜕𝜕𝑥𝑥𝐼𝐼 (Hahm, P.D. ‘04)

Æ 𝛿𝛿𝐼𝐼 ≈ 𝐷𝐷0𝐼𝐼0/ 𝛾𝛾 1/2 Æ SOL penetration depth for turbulence

𝐼𝐼0 Æ intensity at LCFS ?!

Utility ??

Pedestal as turbulence 
reservoir for SOL...

SOL

Ped.

Turbulent



• Also estimate 𝛿𝛿𝐼𝐼 by

(Prop. Speed) / Width  ≈ Damping rate

𝑢𝑢 ≡ 𝐷𝐷0𝜖𝜖/𝑤𝑤2 𝜖𝜖 = ∫−𝑤𝑤
0 𝐼𝐼 𝑑𝑑𝑑𝑑

𝛿𝛿𝐼𝐼 ≈ 𝐷𝐷0𝜖𝜖
𝑤𝑤2 𝛾𝛾

Æ width

• Equating:   𝐼𝐼0 ≈ 𝐷𝐷0𝜖𝜖2/𝑤𝑤4 𝛾𝛾

• then  Γ𝐼𝐼 ,  the intensity flux into SOL:

Γ𝐼𝐼 ~ 𝐼𝐼0𝛿𝛿𝐼𝐼 𝛾𝛾 ~ 𝜖𝜖𝐼𝐼0𝐷𝐷0/𝑤𝑤2 ,  so...

speed pedestal 
turbulence energy

separatrix intensity 
in terms of pedestal turbulence energy

expanding slug 
of turbulence



• Turbulence Intensity Penetration Depth into SOL

𝛿𝛿𝐼𝐼 ≈ Γ𝐼𝐼
1/3 𝐷𝐷0

1/3 𝛾𝛾 −2/3

• If 𝐷𝐷0 ∼ 𝐷𝐷𝐵𝐵,   𝛾𝛾 ∼ 𝑉𝑉𝑡𝑡𝑡𝑡𝑡/𝑅𝑅𝑅𝑅

𝛿𝛿𝐼𝐼 ≈ Γ𝐼𝐼
1/3 𝑚𝑚𝑡𝑡𝑅𝑅2𝑅𝑅2

𝑒𝑒 𝐵𝐵0

1/3

≈ Γ𝐼𝐼
1/3 𝐵𝐵𝜃𝜃

−2/3 𝑚𝑚𝑡𝑡
1/3

• For 𝛿𝛿𝐼𝐼 > 𝑤𝑤𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑠𝑠𝑡𝑡𝐺𝐺𝐺𝐺 ;    Γ𝐼𝐼 > 𝑉𝑉𝐷𝐷3 / 𝐷𝐷0 𝛾𝛾 1/3

– Defines the critical intensity flux required to broaden the SOL

– Gives cross-over criterion

,  𝛾𝛾 ∼ 𝜔𝜔𝑇𝑇𝑡𝑡



Comments

• Γ𝐼𝐼 > 𝑉𝑉𝐷𝐷3/ 𝐷𝐷0 𝛾𝛾 1/3 Æ

𝛾𝛾 ∼ 𝜔𝜔𝑇𝑇𝑡𝑡

• Weak 𝐵𝐵𝜃𝜃 dependence !

• Large R favorable Æ weakens 𝑉𝑉𝐷𝐷

• If turbulence sufficient 𝑠𝑠/𝑡𝑡

�𝑉𝑉/ 𝑙𝑙 > 𝜔𝜔𝑇𝑇𝑡𝑡 ,  can eliminate unfavorable 𝐵𝐵𝜃𝜃 scaling

• Turbulent pedestal states obviously of great interest; 

Experiment to measure and visualize spreading ?!

critical intensity flux to exceed 𝜆𝜆𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑠𝑠𝑡𝑡𝐺𝐺𝐺𝐺
Æ can translate into “blobs” formulation



Conclusions

• Turbulence spreading from pedestal as likely origin of SOL 

turbulence

• Model: SOL as dual-flux-driven turbulent boundary layer:

𝑄𝑄0,  Γ𝐼𝐼0 Å Intensity flux

• Turbulence penetration depth  𝛿𝛿𝐼𝐼

Critical Γ𝐼𝐼 s/t  𝛿𝛿𝐼𝐼 > 𝑤𝑤𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑠𝑠𝑡𝑡𝐺𝐺𝐺𝐺

• Begs for studies of pedestal and SOL turbulence spreading 

dynamics, especially in “turbulent pedestal” states 

estimated
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